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Background. Aggressive lipid lowering with high doses of statins increases the risk of statin-induced myopathy. However, the
cellular mechanisms leading to muscle damage are not known and sensitive biomarkers are needed to identify patients at risk
of developing statin-induced serious side effects. Methodology. We performed bioinformatics analysis of whole genome
expression profiling of muscle specimens and UPLC/MS based lipidomics analyses of plasma samples obtained in an earlier
randomized trial from patients either on high dose simvastatin (80 mg), atorvastatin (40 mg), or placebo. Principal Findings.

High dose simvastatin treatment resulted in 111 differentially expressed genes (1.5-fold change and p-value,0.05), while
expression of only one and five genes was altered in the placebo and atorvastatin groups, respectively. The Gene Set
Enrichment Analysis identified several affected pathways (23 gene lists with False Discovery Rate q-value,0.1) in muscle
following high dose simvastatin, including eicosanoid synthesis and Phospholipase C pathways. Using lipidomic analysis we
identified previously uncharacterized drug-specific changes in the plasma lipid profile despite similar statin-induced changes
in plasma LDL-cholesterol. We also found that the plasma lipidomic changes following simvastatin treatment correlate with the
muscle expression of the arachidonate 5-lipoxygenase-activating protein. Conclusions. High dose simvastatin affects multiple
metabolic and signaling pathways in skeletal muscle, including the pro-inflammatory pathways. Thus, our results demonstrate
that clinically used high statin dosages may lead to unexpected metabolic effects in non-hepatic tissues. The lipidomic profiles
may serve as highly sensitive biomarkers of statin-induced metabolic alterations in muscle and may thus allow us to identify
patients who should be treated with a lower dose to prevent a possible toxicity.
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INTRODUCTION
Large-scale clinical trials have shown that statins are effective and

safe cholesterol lowering drugs [1–3]. Recently more patients have

been titrated to higher doses of statins in order to reach the new

goals of LDL-cholesterol lowering and achieve even greater

reductions of atherosclerotic complications. However, aggressive

treatment with high dosages increases the risk of statin-induced

myopathy [4]. Elucidation of myopathy mechanisms and identi-

fication of patients likely not to tolerate the treatment is therefore

of great clinical interest. In addition, comparison of different statin

drugs used for aggressive treatment is essential. The currently used

statins do have clear differences for instance in their pharmaco-

kinetic properties [5], therefore it is likely that some of the statins

at high dosages are more prone to have unexpected and unwanted

effects in non-hepatic tissues.

We do know that some diseases such as hypothyroidism, liver

dysfunction and diabetes increase the risk of muscle complications

due to statin treatment [6]. Furthermore, exercise, alcohol,

infections or underlying metabolic diseases seems to exacerbate

this risk [7]. Under these circumstances development of myopathy

may be exacerbated by interactions with statins [8]. Mukhtar and

Reckless listed four potential myopathy mechanisms in their recent

review: Depletion of intracellular cholesterol leading to calcium

influx; inhibited protein synthesis, signal transduction and

metabolism due to decreased mevalonate acid and its metabolite

concentrations; reduced ubiquinone (coenzyme Q10) concentra-

tions; and enhanced apoptosis [8]. Muscle biopsies obtained from

patients with statin-induced myopathy without creatine kinase

(CK) elevations have shown evidence of mitochondrial dysfunc-

tion, including abnormally increased lipid stores in muscles [9].

We observed decreased mitochondrial function in patients on high

dose simvastatin treatment, with no signs of myopathy [10]. Later,

we confirmed that high dose (80 mg) simvastatin affects muscle

mitochondria by assessing a significant decrease in the muscle

mitochondrial DNA (mtDNA) content during treatment (Schink et
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al, submitted). Thus, statins are causing unwanted mitochondrial

effects and defective mitochondrial metabolism may already be

involved during the early development of statin-induced myopathy

when the currently used plasma CK measurements are not

sensitive enough to identify these patients at risk of developing

muscle damage.

Given the existing gap in knowledge and understanding of

statin-induced muscle damage, we embarked in a systems biology

approach aiming to gain insight into the mechanism and potential

biomarkers of myopathy in the clinical setting. Of particular

relevance is to gain new knowledge of signaling and metabolic

pathways in muscle involved in myopathy and early molecular

markers applicable in clinical setting. To address both objectives,

gene expression profiling of muscle tissue is an obvious strategy of

choice. As changes in plasma lipid composition are of particular

interest in the study of statins, plasma lipidomics is one possible

option to address the latter. Recent advances in liquid chroma-

tography and mass spectrometry have empowered us with ability

to reliably measure hundreds of lipid molecular species from

biological samples in parallel [11,12].

In this paper we report the study of muscle gene expression

profiles in combination with plasma lipidome analysis before and

during high dose statin treatment. The specimens were from

patients who participated in our earlier controlled and random-

ized study comparing placebo and high dosages of atorvastatin

and simvastatin [10]. The simvastatin treated patients were

particularly unique and suitable for sensitive early marker

discovery due to changes in their mitochondrial function, mtDNA

and ubiquinone concentration in muscle. The systems biology

approach allowed us to compare two widely used statins in terms

of their effects on muscle gene expression and plasma lipidome.

In addition, we were able to illuminate relevant biological

pathways and to identify biomarker candidates related to

unwanted and potentially toxic statin-induced changes in muscle

metabolism.

METHODS

Patients
Plasma samples from 37 subjects of an earlier study [10], focusing

on the effect of high dose statin treatment on skeletal muscle

metabolism, were used for plasma lipidome analysis; placebo

(N = 11), simvastatin (N = 13), and atorvastatin (N = 14). The

subjects aged between 45 and 69 years and their average serum

total cholesterol concentration was 5.860.9 mmol/L and serum

triglycerides below 4.5 mmol/L. Muscle specimens from eighteen

age matched men being treated either with atorvastatin (n = 6),

simvastatin (n = 6) or placebo (n = 6) were selected for genome

wide expression analysis. Clinical parameters are available as

Supporting Information Dataset S1 and Table S1.

The study patients had never been treated with statins before.

They were instructed to adhere to their normal diet during the

study. Patients with familial hypercholesterolemia and patients

with serum total cholesterol.7.0 mmol/L in the initial screening

were excluded. Other exclusion criteria were: use of concurrent

lipid altering medication or antioxidant vitamins, renal or hepatic

dysfunction, and use of medication known to affect metabolism of

atorvastatin or simvastatin. The study protocol was accepted by

the Ethics Committee of the Tampere University Hospital and

written informed consents were obtained from all participants.

Design
The original study was a randomized, double blind and placebo-

controlled trial with three treatment groups: placebo, atorvastatin

40 mg/day, and simvastatin 80 mg/day. Placebo was simvastatin-

matched, and to ensure also blinding of atorvastatin, all study

drugs were supplied in sealed, identical, numbered containers. The

duration of the follow-up was eight weeks. Muscle biopsies were

obtained at baseline and at the end of the treatment period.

Biopsies were taken from the lateral portion of the quadriceps

femoris muscle in local anesthesia at about the mid-point between

the greater trochanter and the knee joint with a biopsy needle

(Tru-Cut, Baxter, McGaw Park, Ill., USA). The muscle specimens

were frozen within 1–2 seconds in liquid nitrogen and stored at

280uC until analyzed. The blood sampling was performed in the

Department of Clinical Chemistry, Tampere University Hospital

by an experienced laboratory technician. Venous blood was drawn

from the antecubital vein in sitting position after a twelve-hour fast

and after 15 minute rest just before blood sampling. The blood

was drawn into tubes containing EDTA, and plasma was

separated after cooling by centrifugation at 2000 rpm for

10 minutes. The samples were stored at 270u until analyzed.

Investigators performing the gene expression and lipidomics

analyses were blinded until the analyses were done.

Gene expression analyses
Microarray experiments were performed using SentrixH Human-6

Expression BeadChips, analyzing over 46 000 known genes, gene

candidates and splice variants (Illumina, San Diego, CA, USA)

according to given instructions. The biopsy samples were

homogenized using Ultra-Turrax (IKA Turrax T8/S8N-5G,

IKA-Werke, Staufen, Germany). The total RNA was extracted

using TRIzol (#15596-018, Invitrogen Corporation, Carlsbad,

CA), DNase treatment and a second RNA purification by Qiagen

kits (#74106, and, #79254, Qiagen GmbH, Hilden, Germany),

all by given instructions.

A 200 ng aliquote of total RNA from each sample were

amplified to cDNA using Ambion’s Illumina RNA Amplification

kit following the instructions (cat no I1755, Ambion, Inc., Austin,

TX, USA). In vitro transcripiton (IVT) reaction of cDNA to

cRNA was performed overnight (14h) including biotin-11-dUTP

(PerkinElmer, cat no PC 3435-0402-Biotin-11-dUTP, .95%,

NEL539001EA, PerkinElmer Life And Analytical Sciences, Inc.,

Boston, MA, USA) for labelling the cRNA product. Both before

and after the amplifications the RNA/cRNA concentrations were

checked with Nanodrop ND-1000 spectrophotometer (Nanodrop

Technologies, Wilmington, DE, USA) and RNA/cRNA quality

was controlled by BioRad’s Experion Automated Electrophoresis

System and RNA StdSens Analysis Kit (BioRad Laboratories,

Inc., Hercules, CA, USA).

1500 ng of each sample cRNA was hybridized to Illumina’s

SentrixH Human-6 Expression BeadChip arrays (Illumina, Inc.,

San Diego, CA, USA) at 55uC overnight (18 h) following the

Illumina Whole-Genome Gene Expression Protocol for BeadSta-

tion (Doc. # 11176837 Rev. F, Illumina Inc.). Hybridized

biotinylated cRNA was detected with 1 mg/ml Cyanine3-

streptavidine (Amersham Biosciences #146065). BeadChips were

scanned with Illumina BeadArray Reader.

Raw intensity data obtained from the IlluminaTM platform were

normalized with Inforsense KDE version 2.0.4 (Inforsense,

London, UK) using quantile normalization method. The same

software was also used for single-gene analyses including fold-

change calculations and filtering the probes. The differences

within the treatment group before and after the intervention were

analyzed using the t-test statistic, with p-values calculated using

5000 permutations.

Pathway analysis of the expression data was performed using

the Gene Set Enrichment Analysis (GSEA) implemented in

Statin-Affected Pathways
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javaGSEA application version 1.0 [13]. In order to avoid

duplicates in the analysis, probes representing the same gene

symbol in IlluminaTM data were replaced with their average

intensity before applying the GSEA. Gene sets for GSEA were

taken from Database C2 of MSigDB version 1.0 of March 2005

[13]. Parameters used for the GSEA analysis are provided in

Supporting Information Text S2. Gene expression data is

available at Array Express web site (http://www.ebi.ac.uk/

aerep/login; accession number E-TABM-116).

RT-PCR analysis
The microarray expression results recorded in the simvastatin

group (n = 5, for one case there was not enough muscle RNA for

PCR) were verified by Real-Time Quantitative TaqMan PCR.

Previously purified cRNA was used as starting material for cDNA

synthesis. A 1000 ng–18 ml aliquote of cRNA was mixed with 1 ml

Promega Random Primer (C1181, Promega U.S., Madison, WI,

USA) and incubated in +70uC for 10 min. The following reagents

were added leading to 25 ml total reaction volume: 1 ml of 10 mM

dNTP blend (F09892, Applied Biosystems, Foster City, CA, USA),

1 ml of Promega M-MLV Reverse Transcriptase 200 U/ml

(M3682) and 4 ml of M-MLV RT 56 reaction buffer. Finally

the incubations were performed in the following order: 10 min in

RT, 50 min in 45uC, and, 10 min in 70uC.

10 ml volume was used for PCR reaction, consisting of 2 ml

aliquote of 1:10 diluted cDNA sample, and, Abgene ABsolute 26
QPCR ROX mix (AB-1139, Abgene, Epsom, UK). The primer

concentrations were 300 nM, probe concentrations for Universal

Probe Library (Exiqon, Vedbæk, Denmark) probes 100 nM and

for ordinary long probes 200 nM. Finally the PCR reactions were

performed in rtPCR system (ABI Prism 7700 Sequence Detection

System, Applied Biosystems) having the following PCR procedure:

95uC for 15 min, and 40 cycles of 95uC for 15 s and 60uC for

1 min. The primer and probe sequences are available upon

request.

Lipidomics analysis of plasma
An aliquot (10 ml) of an internal standard mixture containing 11

lipid classes, and 0.05 M sodium chloride (10 ml) was added to

plasma samples (10 ml) and the lipids were extracted with

chloroform/methanol (2:1, 100 ml). After vortexing (2 min),

standing (1 hour) and centrifugation (10000 RPM, 3 min) the

lower layer was separated and a standard mixture containing 3

labeled standard lipids was added (10 ml) to the extracts. The

sample order for LC/MS analysis was determined by randomi-

zation.

Lipid extracts were analysed on a Waters Q-Tof Premier mass

spectrometer combined with an Acquity Ultra Performance LCTM

(UPLC). The column, which was kept at 50uC, was an Acquity

UPLCTM BEH C18 10650 mm with 1.7 mm particles. The

binary solvent system included A. water (1% 1 M NH4Ac, 0.1%

HCOOH) and B. LC/MS grade (Rathburn) acetonitrile/isopro-

panol (5 2, 1% 1 M NH4Ac, 0.1% HCOOH). The gradient

started from 65% A/35% B, reached 100% B in 6 min and

remained there for the next 7 min. The total run time including

a 5 min re-equilibration step was 18 min. The flow rate was

0.200 ml/min and the injected amount 0.75 ml. The temperature

of the sample organizer was set at 10uC.

The lipid profiling was carried out on Waters Q-Tof Premier

mass spectrometer using ESI+ mode. The data was collected at

mass range of m/z 300–1200 with a scan duration of 0.2 sec. The

source temperature was set at 120uC and nitrogen was used as

desolvation gas (800 L/h) at 250uC. The voltages of the sampling

cone and capillary were 39 V and 3.2 kV, respectively. Reserpine

(50 mg/L) was used as the lock spray reference compound (5 ml/

min; 10 sec scan frequency).

Data was processed using MZmine software version 0.60 [14].

Lipids were identified using internal spectral library. The

normalization was performed using multiple internal standards

as described in the Supporting Information Text S1. Only the

identified lipid molecular species were included in further data

analyses.

The Supporting Information Text S1, Figures S6–23 and

Tables S8–11 also include general lipidomics platform character-

istics such as internal and external standards used, calibration

curves, dynamic ranges, recovery, variability, identification

and quality control workflow, as well as illustrative spectra (MS

and MS/MS) demonstrating how the specific species can be

identified.

Lipid nomenclature
Lipids from the lipidomic analysis were named according to Lipid

Maps (http://www.lipidmaps.org) [15]. For example, lysopho-

sphatidylcholine with 16:0 fatty acid chain was named as

monoacyl-glycerophosphocholine GPCho(16:0/0:0). In case the

fatty acid composition was not determined, total number of

carbons and double bonds was marked. For example, a phospha-

tidylcholine species GPCho(16:0/20:4) is represented as

GPCho(36:4). However, GPCho(36:4) could also represent other

molecular species, for example GPCho(20:4/16:0) or

GPCho(18:2/18:2). Such mass isomers may be separated

chromatographically, as shown in Supporting Information Figure

S20A for two lysophosphatidylcholine species GPCho(17:0/0:0)

and GPCho(0:0/17:0).

Chemometric modeling and statistical analysis of

lipidomics data
Partial least squares discriminant analysis (PLS/DA) [16,17] was

utilized as a supervised modeling method using SIMPLS algorithm

to calculate the model [18]. As the total number of samples was

insufficient for independent validation, no hold-out dataset was

utilized for cross-validation. Instead, Venetian blinds cross-

validation method [19] and Q2 scores were used to optimize the

model. Top loadings for latent variables associated with drug

specific effects were reported. The VIP (variable importance in the

projection) values [20] were calculated to identify the most

important molecular species for the clustering of specific groups.

Multivariate analyses were performed using Matlab version 7.2

(Mathworks, Inc.) and the PLS Toolbox version 3.5 Matlab

package (Eigenvector Research, Inc.).

The regression of lipidomics data on muscle gene expression

profiles was performed using the lasso method [21]. The lasso is

a shrinkage regression method, similar to Ridge regression [22],

which performs continuous variable selection causing some of the

regression coefficients to be exactly zero. This reduces the variance

of the regression estimates, which in the case of lipidomics data

with large number of variables would otherwise be unacceptably

high. Furthermore, the subset of lipids corresponding to non-zero

coefficients can be considered as ‘the most important’ in

explaining the muscle gene expression profiles. The lasso regression

coefficients were calculated with the Least Angle Regression

method [23] implemented in the R statistical language (package

LARS). The corrected R2 value and the Schwartz Criterion [24]

were reported along with the measured and predicted gene

expression values.
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RESULTS

Gene expression analysis reveals multiple

upregulated pathways in the simvastatin group
In order to understand the pathways associated with statin response

in muscle, we performed the whole genome microarray analysis of

muscle biopsies. Microarray experiments were performed in 18 age-

matched men (6 subjects from each group) who did not have any

observed side effects such as muscle pain or CK elevations as a result

of statin treatment. However, simvastatin treated men had sub-

stantial statin-induced unwanted and potentially toxic changes in

muscle ubiquinone and mtDNA as reported earlier.

According to the used selection criteria for differentially

expressed genes (1.5-fold change and p-value,0.05), expression

of one gene was changed in the placebo group. Only modest

changes were recorded in the atorvastatin group as expression of

five genes was altered during the intervention. In the simvastatin

group, however, expression of 111 genes changed (26 down-

regulated and 85 up-regulated). Based on a hierarchical cluster

analysis 20 genes were selected for further RT-PCR control. The

following 5 genes were significantly upregulated: ALOX5AP

(+3.6-fold, p = 0.041), CCL5 (+11.9-fold, p = 0.011), COL3A1

(+27.1-fold, p = 0.026), MYL5 (+8.0-fold, p = 0.021), MYBPH

(+49.0-fold, p = 0.027).

As the recorded differences in single gene expressions were

rather modest in general, we performed a Gene Set Enrichment

Analysis [13] to identify globally affected metabolic pathways. The

parameters of GSEA analysis are listed in Supporting Information

Text S2. No pathways were affected significantly in the

atorvastatin or placebo groups according to the criteria (False

Discovery Rate q-value,0.25) recommended by Subramanian et

al. [13]. However, in the simvastatin group 143 pathways were up-

regulated (q,0.25) (Supporting Information Dataset S2). Due to

the large number of affected pathways we limited our systematic

analyses to the 23 most affected pathways (q,0.10) (Table 1).

Serum lipidomics reveals drug-specific changes
In order to investigate how the high dose statin treatment affects

the plasma lipid profiles, we applied the UPLC/MS based

lipidomics analysis, leading to a total of 132 identified lipid

molecular species (data available as Supporting Information

Dataset S3). Partial Least Squares Discriminant Analysis (PLS/

DA) [17] revealed drug-specific changes in lipid profiles

(Figure 1A). The PLS/DA model details are listed as Supporting

Information Text S3 and Figure S1. The differences along the first

latent variable (LV1), were associated with expected changes in

triacylglycerols and cholesterol esters in agreement with the

hypolipidemic effect expected from both drugs (Supporting

Information Table S2). Specific differences between the simvas-

tatin and atorvastatin lipid profiles were found in the third latent

variable (LV3). Following VIP analysis, the most important lipid

species were identified for each intervention group. The list of

loadings in direction of atorvastatin-simvastatin differences (LV3)

for most important lipids in simvastatin and atorvastatin groups is

Table 1. Affected pathways in simvastatin group as revealed by Gene Set Enrichment Analysis, with the False Discovery Rate (FDR)
q-value cutoff of 0.1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NAME Source SIZE ES NES NOM p-val FDR q-val

ST_T_Cell_Signal_Transduction Signalling Transduction KE 45 0,58 1,68 0,000 0,055

soddPathway BioCarta 10 0,83 1,69 0,014 0,060

Eicosanoid_Synthesis BioCarta 15 0,79 1,66 0,000 0,071

plcPathway BioCarta 8 0,78 1,69 0,000 0,072

tubbyPathway BioCarta 7 0,70 1,70 0,000 0,076

caspasePathway BioCarta 23 0,68 1,65 0,008 0,077

CR_DEATH Brentani PNAS 2003 [31] 76 0,53 1,64 0,005 0,079

hivnefPathway BioCarta 58 0,56 1,64 0,000 0,085

ephA4Pathway BioCarta 10 0,86 1,61 0,004 0,085

deathPathway BioCarta 33 0,59 1,61 0,005 0,089

MAP00590_Prostaglandin_and_leukotriene_metabolism GenMAPP 19 0,72 1,62 0,005 0,089

nkcellsPathway BioCarta 20 0,64 1,60 0,000 0,090

SA_CASPASE_CASCADE SigmaAldrich 19 0,63 1,59 0,000 0,091

rac1Pathway BioCarta 22 0,73 1,62 0,004 0,092

ST_Dictyostelium_discoideum_cAMP_Chemotaxis_Pathway Signalling Transduction KE 33 0,64 1,61 0,007 0,093

nktPathway BioCarta 29 0,62 1,62 0,018 0,094

eosinophilsPathway BioCarta 8 0,77 1,58 0,025 0,094

tall1Pathway BioCarta 15 0,56 1,60 0,003 0,095

il17Pathway BioCarta 15 0,78 1,57 0,023 0,095

CBF_LEUKEMIA_DOWNING_AML Manually Curated 75 0,60 1,58 0,023 0,097

ureacyclePathway BioCarta 7 0,87 1,57 0,008 0,098

cell_motility GO 116 0,61 1,58 0,014 0,098

MAP00562_Inositol_phosphate_metabolism GenMAPP 20 0,65 1,57 0,032 0,099

No pathways were affected in atorvastatin or placebo groups.
doi:10.1371/journal.pone.0000097.t001..
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shown in Figure 1B. Notably, the main plasma lipid profile

differences between the two statins can be considered as lipid-class

specific, with specific upregulation of several phosphatidylethano-

lamines species and selective pools of long chain triacylglycerols.

Similarly, downregulation of ether phosphocholines and choles-

terol esters were observed in the simvastatin group compared to

the atorvastatin group.

Combined lipidomics and gene expression
We wanted to identify if any of the lipidomic changes in plasma

could be used as a marker of altered gene expression in muscle in

the high dose simvastatin intervention group. Therefore we

investigated if any of these gene expression changes were

associated with the differences observed in the serum lipidome.

We selected a subset of genes based on GSEA analysis.

Specifically genes from PLC, tubby, eicosanoid biosynthesis, and

sodd pathways were chosen, based on their ranking as 2nd to 5th

on FDR q-value. The top scored pathway ‘‘ST_T_Cell_Signal_-

Transduction’’ was not selected for further analysis since it is less

pathway-specific than the other four and overlaps with the PLC

pathway. The PLS/DA analysis on combined muscle gene

expression (38 transcripts) and plasma lipid profile data revealed

clear differences between the three treatment groups (Figure 2A).

The PLS/DA model details are listed as Supporting Information

Text S4. Simvastatin treatment was primarily associated with the

Figure 1. Partial least squares discriminant analysis (PLS/DA) of serum lipidomics data. Results after 8 week treatment from placebo (N = 11),
atorvastatin (N = 14), and simvastatin (N = 12) groups, with 132 identified lipid species included in analysis as variables. For each molecular species
and each subject, its level after the 8 week treatment period was scaled by subtracting its median level across all subjects prior to treatment and
divided by corresponding standard deviation. Four latent variables were used in the model (Q2 = 0.46). The labels are patient ID numbers. The lines
outlining different groups are shown as a guide. (A) The scores for Latent Variables (LV) 1 and 3 reveal serum lipid changes specific to the statin
treatment (LV1) as well as statin-specific changes (LV3). (B) Loadings on LV3 for most important lipids in simvastatin or atorvastatin groups selected
by VIP analysis. Only lipids for which at least one of the two groups has VIP value greater than 2 are shown.
doi:10.1371/journal.pone.0000097.g001

Figure 2. PLS/DA analysis on combined muscle gene expression and serum lipid data. Results after intervention for the subjects from placebo
(N = 5), atorvastatin (N = 6), and simvastatin (N = 6) groups. Total 38 genes from four enriched pathways and 132 lipids were included in the analysis as
variables. Data was autoscaled prior to multivariate analysis. Three latent variables were used in the model (Q2 = 0.50). The labels are patient ID
numbers. (A) The PLS/DA score plot reveals treatment-specific differences between the treatments are observed in molecular profiles after
intervention. (B) Loadings for the first two latent variables reveal plasma lipid classes and muscle pathways associated with specific interventions. LPC
is shorthand for lysophosphatidylcholine (for example GPCho(18:0/0:0)).
doi:10.1371/journal.pone.0000097.g002
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gene expression changes in multiple genes involved in eicosanoid

synthesis pathways as well as changes in multiple phosphatidyl-

ethanolamine and sphingomyelin molecular species (Figure 2B).

Since the PLS analysis maximizes the product of variance matrix

of measured variables (e.g. combined gene expression and lipid

profile data) and correlation of measured data with properties of

interest (e.g. treatment groups), our results indicate that there is

a high degree of correlation between the upregulated genes

(pathways) in skeletal muscle and specific lipids plasma changes in

the simvastatin group.

The results from combined gene expression and lipid PLS/DA

analysis raise the possibility that plasma lipid biomarkers may be

found for the pathway changes observed in the muscle. In order to

investigate this possibility, we performed regression analysis of

plasma lipid profile data on a muscle selected marker gene

expression profile. We chose arachidonate 5-lipoxygenase activat-

ing protein (ALOX5AP, Uniprot ID: P20292) as the marker for

simvastatin dysregulated pathway changes in muscle. The

ALOX5AP gene was selected based on high VIP scores in

multiple PLS/DA analyses, PCR validated significant fold change

in the simvastatin group, and its well known (pro-inflammatory)

biological role [25]. As the main goal of this analysis was discovery

of potential plasma molecular markers for statin induced muscle

toxicity, we applied a shrinkage regression method lasso [21]

aiming to find a subset of plasma lipids predictive of specific gene

expression levels in skeletal muscle. Figure 3A shows the results of

the lasso model for NZ = 25 non-zero lipid variables. The variables

and their coefficients are shown in Figure 3B. The lasso analysis

was also performed for NZ = 5, 10, 15, and 20 non-zero variables

(Supporting Information Tables S3–S7 and Figures S2–S5). Our

analyses identified ALOX5AP gene expression in muscle had

a high positive regression coefficients with plasma levels of

phosphatidylethanolamine (42:6) and negative for the cholesterol

ester ChoE(18:0), i.e. both type of lipids were selected as the non-

zero variables in all regression analyses, with consistent results.

Also in all analyses except NZ = 5, the sphingomyelins SM(d18:1/

24:0) and SM(d18:1/24:1) showed negative regression coefficients

(Figure 2B). Also the ether phosphocholines were selected with

consistently negative coefficients, in agreement with PLS/DA

analyses (Figures 1B and 2B).

DISCUSSION
Our systems biology strategy using combined gene expression and

lipidomics analyses revealed that simvastatin at high doses induces

significant changes in the expression of multiple genes controlling

metabolic and inflammatory pathways in a non-hepatic tissue.

This observation markedly contrast with the minimum gene

expression changes observed in skeletal muscle with atorvastin

40mg. Our studies also revealed novel plasma biomarker

candidates for safety assessment of statin treatment before

recorded changes in muscle metabolism become clinically evident.

Similar to an earlier report [26], expression of genes related to

cholesterol metabolism or mevalonate pathway were only

modestly affected by statins in the present study. Thus, our data

do not directly support the view that statins would cause

mitochondrial dysfunction by reducing ubiquinone, a mitochon-

drial coenzyme with a cholesterol synthetic pathway derived side-

chain, due to inhibition of HMG-CoA reductase in the muscle.

Similarly we were not able to provide evidence that statins would

lead to inhibition of protein synthesis, signal transduction and

metabolism due to decreased muscle mevalonate acid. Since our

patients did not have any signs of clinical myopathy and muscle

damage, we were not able to judge the significance of early

proapoptotic markers during the course of the myopathy.

However, in the GSEA analysis several pro-apoptosis pathways

already appeared with significant FDR q-values at these early

stages and, therefore, the present results support the role of pro-

apoptosis pathways in statin myotoxicity. Furthermore, the

hypothesis of an increased Ca2+ influx as a mediator of statin

induced toxicity is supported by the significant up-regulation of

phospholipase C pathway and by the dysregulation of genes

encoding for calcium binding proteins (Supporting Information

Dataset S2) in the present study. Another hallmark of high dose

simvastatin effect in muscle is the activation of pro-inflammatory

pathways such as eicosanoid synthesis. However, the present

results cannot reveal the actual trigger leading to impaired

mitochondrial function and induction of these proinflamatory

pathways.

Atorvastatin and simvastatin treatments also resulted in specific

plasma lipidome profiles. Thus, lipidomics analysis may have the

potential of providing individualized specific lipid lowering agents

Figure 3. Regression of plasma lipid data on arachidonate 5-lipoxygenase activating protein (ALOX5AP) muscle gene expression profile using
the lasso method. 25 lipid variables were chosen to build the regression model. (A) ALOX5AP expression values as predicted by the model. (B)
Regression coefficients for the lipid species selected by lasso.
doi:10.1371/journal.pone.0000097.g003
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suitable to individual patients after the significance of these novel

lipid biomarkers is elucidated. The role of sphingolipids as

independent predictors of coronary artery disease has been

previously suggested [27]. However, our results demonstrate that

plasma sphingomyelin changes in response to statin therapy varies

for different sphingomyelin molecular species. This raises

important questions about the biological significance of these

molecular species.

We also identified ether phospholipids as another type of lipids

differentially regulated by simvastatin. Interestingly plasmalogens,

a most abundant sub-class of ether phospholipids, have been

associated with protection against oxidative damage [28,29].

Their observed decrease (and negative correlation with the

ALOX5AP expression) following simvastatin treatment may thus

be functionally linked to increased oxidative stress and in-

flammation in muscle. Phosphatidylethanolamines were specifi-

cally dysregulated by simvastatin. The significance of this

observation remains to be elucidated but it is interesting that

a link between the Leukotriene B4 (a lipid synthesised via

ALOX5AP) and the release of arachidonate from phosphatidyl-

ethanolamine in human neutrophils has been established [30]. All

together these data indicate that in parallel with specific gene

expression changes in skeletal muscle, treatment with simvastatin

was also associated with parallel changes in plasma of lipidic

proinflamatory markers.

One limitation of the present study is the relatively small sample

size due to obvious limitations in the number of muscle specimens

obtained from patients. However, the conclusions of the results are

strengthened by the combined genomic and lipidomic analyses.

Although it may considered a potential weakness of the study, we

decided not include at this stage any patients with acute proven

myopathy. The rational for this is that analysis of gene expression

profiles in specimens obtained from patients during acute muscle

events (unpublished results) revealed hundreds of different genes

affected in the context of muscle damage, making it rather difficult

to analyze the results as directly related to the statin treatment or

establish their potential use as early markers of myopathy.

Therefore our strategy of investigating individuals with well-

defined statin-induced mitochondrial defects during a randomized

trial allowed us to identify markers with potential diagnostic and

prognostic value. In conclusion, the combined analyses of gene

expression and lipidomics profiles in asymptomatic statin treated

individuals revealed that: a) simvastatin 80 mg induces specific

gene expression and lipid changes compared to equally efficient

atorvastatin treatments and b) that our combined transcriptomic

lipidomic analysis provides bona fide sensitive biomarkers of statin

induced metabolic changes in muscle potentially useful to identify

patients at risk early enough to prevent actual muscle damage.

These biomarkers are now available for further validation in

patients with proven statin-induced myopathy.
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